首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1051篇
  免费   55篇
  国内免费   2篇
  2022年   8篇
  2021年   9篇
  2020年   8篇
  2019年   9篇
  2018年   12篇
  2017年   7篇
  2016年   7篇
  2015年   18篇
  2014年   18篇
  2013年   98篇
  2012年   44篇
  2011年   35篇
  2010年   32篇
  2009年   29篇
  2008年   36篇
  2007年   38篇
  2006年   39篇
  2005年   45篇
  2004年   72篇
  2003年   47篇
  2002年   56篇
  2001年   29篇
  2000年   23篇
  1999年   21篇
  1998年   13篇
  1997年   12篇
  1996年   19篇
  1995年   16篇
  1994年   11篇
  1993年   12篇
  1992年   21篇
  1991年   14篇
  1990年   12篇
  1989年   18篇
  1988年   12篇
  1987年   13篇
  1986年   15篇
  1985年   11篇
  1984年   9篇
  1983年   13篇
  1982年   10篇
  1981年   17篇
  1980年   20篇
  1979年   14篇
  1978年   6篇
  1977年   13篇
  1974年   6篇
  1973年   8篇
  1972年   5篇
  1968年   6篇
排序方式: 共有1108条查询结果,搜索用时 15 毫秒
81.
The native and the molten globule states (N and MG states, respectively) of canine milk lysozyme (CML) were examined by CD spectroscopy and AGADIR algorithm, a helix-coil transition program. It revealed that the helical content of the MG state was higher than that of the N-state, suggesting that non-native alpha-helix is formed in the MG state of CML. Using AGADIR, it indicated the possibility of alpha-helix formation in the third beta-strand region in the MG state. To investigate this possibility, we designed a mutant, Q58P, in which the helical propensity of the MG state was significantly decreased around the third beta-strand region. It appeared that the absolute ellipticity value at 222 nm of the mutant in the MG state was smaller than that of the wild-type protein. It could be assumed that the non-native alpha-helix is formed around the third beta-strand region of wild-type CML in the MG state.  相似文献   
82.
The Dam1 complex, also known as DASH complex, is the outer kinetochore protein complex of yeast that plays a crucial role in attachment of kinetochore to microtubule. The Dam1 complex is formed by at least nine proteins including Dam1p, Duo1p, Dad1p, Spc19p and Spc34p. In this study, domains of Spc34p that physically interact with other subunits of the complex were mapped using a high-throughput methodology. The method is a combination of two-hybrid screening of a random truncation library of the Spc34 gene and a unique PCR-based amplification that converge the selected DNA fragments to a few short fragments. Duo1p, Dam1p, Dad1p and Spc19p binding domains of Spc34p were mapped on M1-E59, M1-D47, M1-D47 or T207-E295 and S154-Q294, respectively. Most of the boundaries were located at less conserved regions among fungal Spc34p homologs, which is consistent with the boundaries of the putative secondary structures. The accuracy of the mapped domain boundaries was verified using truncated Spc34p polypeptides. The results and methodology we demonstrated herein not only shed light on the molecular architecture of the protein complex but also pave the road to the high-throughput identification of specific interaction domains of proteins whose possible interaction partners have been identified in genome-scale analyses.  相似文献   
83.
Latent membrane protein 1 (LMP1), an Epstein-Barr virus transforming protein, is able to activate NF-kappaB through its carboxyl-terminal activation region 1 (CTAR1) and 2 (CTAR2), but the exact role of each domain is not fully understood. Here we show that LMP1 activates NF-kappaB in different NF-kappaB essential modulator (NEMO)-defective cell lines, but not in cells lacking both IkappaB kinase 1 (IKK1) and 2 (IKK2). Mutational studies reveal that CTAR1, but not CTAR2, mediates NEMO-independent NF-kappaB activation and that this process largely depends on IKK1. Retroviral expression of LMP1 mutants in cells lacking either functional NF-kappaB inducing kinase (NIK), NEMO, IKK1, or IKK2 further illustrates distinct signals from the two activation regions of LMP1 for persistent NF-kappaB activation. One originates in CTAR2, operates through the canonical NEMO-dependent pathway, and induces NFKB2 p100 production; the second signal originates in CTAR1, utilizes NIK and IKK1, and induces the processing of p100. Our results thus help clarify how two functional domains of LMP1 persistently activate NF-kappaB through distinct signaling pathways.  相似文献   
84.
The X-ray crystal structure of a catalytic site mutant of beta-amylase, E172A (Glu172 --> Ala), from Bacillus cereus var. mycoides complexed with a substrate, maltopentaose (G5), and the wild-type enzyme complexed with maltose were determined at 2.1 and 2.0 A resolution, respectively. Clear and continuous density corresponding to G5 was observed in the active site of E172A, and thus, the substrate, G5, was not hydrolyzed. All glucose residues adopted a relaxed (4)C(1) conformation, and the conformation of the maltose unit for Glc2 and Glc3 was much different from those of other maltose units, where each glucose residue of G5 is named Glc1-Glc5 (Glc1 is at the nonreducing end). A water molecule was observed 3.3 A from the C1 atom of Glc2, and 3.0 A apart from the OE1 atom of Glu367 which acts as a general base. In the wild-type enzyme-maltose complex, two maltose molecules bind at subsites -2 and -1 and at subsites +1 and +2 in tandem. The conformation of the maltose molecules was similar to that of the condensation product of soybean beta-amylase, but differed from that of G5 in E172A. When the substrate flips between Glc2 and Glc3, the conformational energy of the maltose unit was calculated to be 20 kcal/mol higher than that of the cis conformation by MM3. We suggest that beta-amylase destabilizes the bond that is to be broken in the ES complex, decreasing the activation energy, DeltaG(++), which is the difference in free energy between this state and the transition state.  相似文献   
85.
The three-dimensional solution structures of human lysozyme were determined at 35 and 4 degrees C using the heteronuclear multidimensional NMR spectroscopy, which were compared with each other to clarify the structural response of this enzyme to lowering of the temperature. Together with the data of the temperature dependence experiments of the lytic activity against Micrococcus luteus, we consider the implication of the observed structural change for the low-temperature-induced reduction of the activity of human lysozyme. The structures of human lysozyme determined at the two temperatures are found to be similar, both of which comprise four alpha-helices (A- to D-helices) and three antiparallel beta-strands (beta(1)-beta(3)), leading to the constructions of the alpha- and beta-domains as previously identified in the X-ray crystal structure. A significant structural change was observed for the "active site lobe" comprising the loop region connecting C- and D-helices and the following D-helix, which moves toward the active site cleft located between the alpha- and beta-domains so as to obstruct the cleft according to the temperature lowering. It further appeared that the total volume as well as the accessible surface area of human lysozyme decreases with lowering of the temperature, suggesting that the internal cavity of this enzyme shrinks under low temperature environment. Because in human lysozyme the region comprising the active site lobe is responsible for turnover of the enzymatic reaction against the substrate, the low-temperature-induced structural change of the active site lobe presumably controls the efficiency of the lytic activity under low temperatures.  相似文献   
86.
87.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   
88.
We report that the intraperitoneal injection of Clostridium perfringens alpha-toxin into mice induces ascites. This phenomenon was monitored by measuring fluid volume and analyzing hematologic data. The mouse toxicity test provides a simple and useful model for examining C. perfringens alpha-toxin-induced vascular permeability.  相似文献   
89.
Structure of the antimicrobial peptide tachystatin A   总被引:4,自引:0,他引:4  
The solution structure of antimicrobial peptide tachystatin A from the Japanese horseshoe crab (Tachypleus tridentatus) was determined by two-dimensional nuclear magnetic resonance measurements and distance-restrained simulated annealing calculations. The correct pairs of disulfide bonds were also confirmed in this study. The obtained structure has a cysteine-stabilized triple-stranded beta-sheet as a dominant secondary structure and shows an amphiphilic folding observed in many membrane-interactive peptides. Interestingly, tachystatin A shares structural similarities with the calcium channel antagonist omega-agatoxin IVA isolated from spider toxin and mammalian defensins, and we predicted that omega-agatoxin IVA also have the antifungal activity. These structural comparisons and functional correspondences suggest that tachystatin A and omega-agatoxin IVA may exert the antimicrobial activity in a manner similar to defensins, and we have confirmed such activity using fungal culture assays. Furthermore, tachystatin A is a chitin-binding peptide, and omega-agatoxin IVA also showed chitin-binding activities in this study. Tachystatin A and omega-agatoxin IVA showed no structural homology with well known chitin-binding motifs, suggesting that their structures belong to a novel family of chitin-binding peptides. Comparison of their structures with those of cellulose-binding proteins indicated that Phe(9) of tachystatin A might be an essential residue for binding to chitin.  相似文献   
90.
Phasins (PhaP) are predominantly polyhydroxyalkanoate (PHA) granule-associated proteins that positively affect PHA synthesis. Recently, we reported that the phaR gene, which is located downstream of phaP in Paracoccus denitrificans, codes for a negative regulator involved in PhaP expression. In this study, DNase I footprinting revealed that PhaR specifically binds to two regions located upstream of phaP and phaR, suggesting that PhaR plays a role in the regulation of phaP expression as well as autoregulation. Many TGC-rich sequences were found in upstream elements recognized by PhaR. PhaR in the crude lysate of recombinant Escherichia coli was able to rebind specifically to poly[(R)-3-hydroxybutyrate] [P(3HB)] granules. Furthermore, artificial P(3HB) granules and 3HB oligomers caused the dissociation of PhaR from PhaR-DNA complexes, but native PHA granules, which were covered with PhaP or other nonspecific proteins, did not cause the dissociation. These results suggest that PhaR is able to sense both the onset of PHA synthesis and the enlargement of the granules through direct binding to PHA. However, free PhaR is probably unable to sense the mature PHA granules which are already covered sufficiently with PhaP and/or other proteins. An in vitro expression experiment revealed that phaP expression was repressed by the addition of PhaR and was derepressed by the addition of P(3HB). Based on these findings, we present here a possible model accounting for the PhaR-mediated mechanism of PHA synthesis. Widespread distribution of PhaR homologs in short-chain-length PHA-producing bacteria suggests a common and important role of PhaR-mediated regulation of PHA synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号